初三数学期中考试试卷分析报告
在生活中,报告的适用范围越来越广泛,我们在写报告的时候要注意涵盖报告的基本要素。那么什么样的报告才是有效的呢?以下是小编整理的初三数学期中考试试卷分析报告,欢迎阅读与收藏。
初三数学期中考试试卷分析报告1为全面提高数学教育质量,促进数学课程改革和教学改革,我校进行了一次期中考试。现做试卷分析如下:
一、试卷分析
本套试卷共6页,分值为100分。主要考察了八年级数学第十六章分式和十七章反比例函数的内容。其中包括:分式、分式的运算、分式的方程、反比例函数及其性质以及实际问题与反比例函数。试卷的总体难度适宜,能坚持“以纲为纲,以本为本的原则”,注重考察基础知识的掌握,覆盖面较广,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章。
第一题为选择题共十个小题,学生出错率较高的题有2、3、6、8、10。第2题涉及到分式的运算,题目难度适中,部分学生由于粗心马虎造成失分;第3题考查反比例函数性质的掌握,题目比较容易,学生对反比例函数的基本性质掌握不熟练导致出错;第6小题考查解分式方程中化分式方程为整式方程,本小题涉及到变号问题,学生做起来感觉吃力;第8和10小题涉及到实际问题,学生应用数学知识解决实际问题的能力较弱,所以出错率较高。
第二题为填空题共七个小题,学生出错率较高的题是12和16。其中12题考查反比例函数的形式及其性质,出错的原因还是基础知识掌握不牢。16题涉及到“增根”,学生出错是由于对增根的理解不到位。
第三题为解答题共七个小题。18题考查分式的混合运算,19题考查解分式方程,题目难度较低,属于简单题。20题是先化简再求值。实质也是考查分式的混合运算,只是难度较18题略有提高,学生多在化简过程中出现错误。21题主要考查用待定系数法确定反比例函数的关系式,题目简单,学生一般会拿到分数。22题实质也是解分式方程,是对解分式方程能力的拓展和提高,有一定难度,学生出错率也较高。23题是列分式方程解应用题,难度适中,学生出错的原因与8和10相同。24小题考查反比例函数与实际问题,难度不大,一般都能做对。
二、学生分析
我所带班级是八年级一班,学生程度参差不齐,两级分化现象严重。学生学习氛围不太浓厚,部分学生学习态度不端正。程度较好的学生对题目的应变能力较弱,程度一般的学生对基础知识的掌握还有欠缺,对部分概念的理解不到位。学生普遍存在的问题就是解决实际问题能力较弱。
三、改进措施
在今后教学中应做如下改进:
1、回归课本,夯实基础
我们要加强基础知识教学和训练,使学生掌握必要的基础知识、基本技能和基本方法。同时加强学生对基本概念的理解,依据大纲要求,不脱离课本,加强训练,打好初中数学基础。
2、尊重学生个体差异,因材施教
学生程度良莠不齐,我们应该因材施教,特别是后进生,应给与更多帮助和关注,避免学生掉队的情况出现。同时鼓励优等生,使其不断进步。
3、关注生活,加强应用
使学生能用数学眼光认识世界,并能用数学知识和数学方法处理解决周围的实际问题。教学中要时常关注社会生活实际,编拟一些贴近生活,贴近实际,有着实际背景的数学应用性试题,引导学生学会阅读、审题、获取信息、解决问题。切实提高学生解决实际问题的能力。
4、强化训练,提高计算能力
在夯实基础的前提下,强化训练,不仅可以提高学生的解题计算能力,还能加深学生对基础知识的理解。对例题、习题、练习题和复习题等,不能就题论题,要以题论法,以题为载体,变换试题,探究解法,研究与其他试题的联系与区别,挖掘出其中蕴涵的数学思想方法等,将试题的知识价值、教育价值一一解析。
初三数学期中考试试卷分析报告2一、试卷评阅的总体状况
本学期文科类数学期末考试仍按现用全国五年制高等职业教育公共课《应用数学基础》教学,和省校下发的统一教学要求和复习指导可依据进行命题。经过阅卷后的质量分析,全省各教学点汇总,卷面及格率到达了54%,平均分54。1分,较前学期有很大的提高,答卷还出现了不少高分的学生,这与各教学点在师生的共同努力和省校统一的教学指导和管理是分不开的。为进一步加强教学管理,总结各教学点的教学经验不断提高教学质量,现将本学期卷面考试的质量分析,发给各教学点,望各教学点以教研活动的方式,开展讨论、分析、总结教学,确保教学质量的稳步提高。
二、考试命题分析
1、命题的基本思想和命题原则命题与教材和教学要求为依据,紧扣教材第五章平面向量;第七章空间图形;第八章直线与二次曲线的各知识点,同时注意到我省的教学实际学和学生的认识规律,注重与后继课程的教学相衔接。以各章的应知、应会的资料为重点,立足于基础概念、基本运算、基础知识和应用潜力的考查。试卷整体的难易适中。
2、评分原则评分总体上坚持宽严适度的原则,客观性试题是填空及单项选取,这部分试题条案是唯一的,得分统一。避免评分误差。主观性试题的评分原则是,以知识点、确题的基本思路和关键步骤为依据,分步评分,不重复扣分、最后累积得分。
三、试卷命题质量分析
以平面向量、直线与二次线为重点,占总分的70%、左右,空间图形约占30%左右,基础知识覆盖面约占90%以上。试题容量填空题13题,20空,单选题6题,解答题三大题共8小题。两小时内解答各题容量是足够的,知识点的容量也较充分。平面向量考查基本概念,向量的两种表示方法,向量的线性运算,向量的数量积的两种表示形式,与非零向量的共线条件,两向量垂直与两向量数量积之间的关系,试题分数约占35%左右。直线与二次曲线考查,曲线与方程关系,各种直线方程及应用,二次曲线的标准方程及一般方程的应用,方程中参数的求解,各几何要素的确定,试题分数约占35%左右。空间图形着重考查平面的基本性质、两线的位置关系、两面的位置关系、线面的位置关系、三垂线定理的应用、异面直线所成的角、线面所成的角、距离计算等问题。表面积和体积的计算,为减轻学生负担末列入试题中(但复习中仍要求应用表面积和体积公式),该部份试题分数约占30%。三章考查重点放在平面向量、直线和二次曲线,其次是空间图形部份。故考查的主次是分明的,贴合高职公共课教学大纲的要求。
四、学生答卷质量分析
填空题:
第1至3题考查向量的线性运算和位置向量的坐标线性运算,答对率约85%、左右,其中大部份学生对书写向量遗漏箭头,部分学生将第3题的答案(—9,3)答成(9,—3)或(—9,—3)等。符号是不清楚的,反映出部份学生对向量的线性运算并非完全掌握。第4~7题涉及立体几何问题,主要考查线面关系,面面关系。答对率70%、左右,其它学生主 ……此处隐藏13227个字……08分,平均分是75、8分;及格率为80、49%,优秀率为46、34%。
二、学生卷面分析:
1、基础知识的掌握、基本技能的形成较好。
2、综合运用知识的能力较弱。表现在学生选择题、应用题。
3、没有形成良好的学习习惯。表现在稍复杂的数据和文字都会对一些能力较弱或习惯较差的学生造成一定的影响。如,卷面上有不少单纯的计算错误、抄错数据、漏小数点、漏做题等低级错误。
三、试卷卷面情况分析:
一题:共12道填空,每空1分。1、2、3、4、5、6、10小题得分率80%,错的同学多数是不细心造成。7、8、9、11小题失分率为90%原因有二:一是数量关系弄不清楚,二是对知识的综合运用能力差。第12小题,学生没有根据生活的实际需要取值,大部分学生是利用四舍五入的方法取值,
二题:共5道判断题,每题1分,错的较多的是2、3小题。原因是2小题也是观察物体的空间思维较差。3小题概念理解不清。
三题:选择题5道,还比较理想。
四题:共4道小题,包括直接写得数、竖式计算、简算、其中直接写得数错误较少。在竖式计算中失分原因主要属于粗心,笔误。如:计算小数点点错:0.68×0.82错算成5.776
五题:共6道小题,每题5分,主要考察学生是否思路清晰,能否准确地进行解答。特别是考察学生对应用题的审题能力。这部分的得分率低于其它部分,能拿到满分的学生不多。第2小题失分率50%,原因题意弄不清楚。
四、反思及改进措施:
1、教学中注重创设问题情境,提高学生解决问题的策略意识的培养。
2、精用教材,因人而教,做好各层次的课前、课中、课后的辅导。
3、激发学生学习兴趣,注重培养学生良好的学习习惯。
4、坚持认真写好教学反思。自我反思是教师专业成长的必由之路。经常对自己教学中的得与失进行自我反思,分析失败的原因,寻求改进的措施和对策,总结成功的经验,以求更快地提高自身课堂教学的素质和水平。
初三数学期中考试试卷分析报告6
在实施高效课堂课程标准理念的指导下,要充分发挥考试的作用,促进学生的发展。学校在4月20日举行了期中测试,本次试卷命题即考查了学生的基础知识和基本技能,又考查了学生的综合能力,试卷难易适中,覆盖面广,科学性与代表性强。重视知识理解与过程的考查,试题的呈现形式多样化。下面就将本次数学试卷统测情况进行分析:
(1)本次考试应考人数24人,实际考试人数24人,平均分43分,优秀人数1人,1人为86分,优秀率4、17%,良好人数3人,良好率12、5%,不及格20人,均为52分以下,不及格率83、3%。充分反映出一个问题,本班学生数学成绩存在严重的两极分化。在以后的教学中,培优补差的任务显得尤为重要,特别是补差。这次考试也有一些同学进步较大如:石云翔、莫乾海、李资莹、梁珊珊。
(2)卷面分为四大板块。
基础题、计算题、操作题、解决问题四大板块,从基础的概念入手,由简到难的过程,难易适中,有较强的科学性与代表性,试题内容注意突出时代特点,贴近生活实际,突出了灵活性,能力性,全面性,人文性的出题原则,提高了测试水平。
(3)答题情况分析。
由于本人参加了监考和阅卷,对学生答题情况从这几点来说。
1、试卷完成情况分析:本次考试,从分数的分布情况和了解学生答卷情况看,整体学生对基础知识的掌握较好,但个别同学的应变能力比较差,一些变形的题目不能随机应变。如(判断题的第4小题)。学生整体完成较差的为解决问题,特别是利用比例知识解决问题,学生不能较好的判断题目中的量成正比例还是反比例关系,导致方程错误。
2、存在的问题
a、多数学生在计算中,尤其是在计算圆柱和圆锥的体积时,存在较大的失误,还有就是在解比例时,存在一些小小的失误如:忘写“解”字,解题步骤不规范。
b、个别学生对用比例解决问题的题型理解还不够透彻。
c、学生中优差程度悬殊。
d、练习中,题形变换不够;学生孤陋寡闻。
3、改进的措施。
a、加强计算训练力度和有效方式,提高计算速度和质量。
b、注重平时的培优补差,缩小优中差之间的差距。
d、重视教学方法的改进,坚持“启发式”和“讨论式”,以问题作为教。
我和数学组的多位数学教师在一起针对试卷中的问题进行了有针对性的教学研究,深刻反思了我们平时的教学行为改进措施如下:
(1)继续加强计算基本功的训练。
“课标”中提到“应重视口算,加强估算,鼓励算法多样化”。“课标”中也提到“应避免繁杂的运算”,但是基本训练还要坚持,计算还应该达到一定的速度。要培养学生的计算能力,必须打好口算的基础,学生还应该具备一定的口算能力,为学生今后的学习打下良好的基础。总之,要经常地、有计划地坚持训练。
(2)要注重思维训练,不要“应试”训练。
思维训练就像口算训练一样,要经常地、有计划地进行。因为现行教材中的题目都比较简单,难度较小,学生遇到灵活一点的题目就不会做。教师要根据教学内容充分挖掘生活资源,转变教学观念,用足,用活教学资源,做到数学内容生活化,生活内容数学化。这样的数学课堂学生一定会感觉到生动有趣。这样做可以有利于学生(至少是一部分学生)思维灵活性的训练。
(3)要注重学习的结果,更要注重学习的过程。
比如“圆柱体与圆锥体的体积之间的关系问题”,让学生知道等底等高的圆锥体的体积是圆柱体积的1/3,固然很重要;但是让学生经历发现这一规律的过程就更为重要。试卷填空题中的第10小题失分率最高,是77%;值得我们深思!要想让学生真正理解,就必须让学生经历发现这一规律的过程。
(4)要注重数学知识的学习,更要注重数学知识的应用。
“课标”中多处提到“培养学生应用数学的意识和综合运用所学知识解决问题的能力”。周玉仁教授说:问题是数学的心脏。儿童学习数学的本质是一种发现问题、探索问题、提炼出数学模型,利用已有的知识经验解决问题的过程。也就是说学习数学是为了应用数学,而这恰恰就是我们学生的薄弱环节。学生掌握数学知识并不难,难的是灵活运用所学知识解决实际问题。例如这样的问题在平日的教学中是被我们忽略了学生的动手操作的培养,这样的实践活动我们开展的还不够,动手操作能力培养还有待于加强。
(5)要关注每一个学生的发展,更要关注学习有困难学生的发展。
这些学生可以说是“学习有困难”的。造成他们“学习有困难”的原因很多,但是不管什么原因,他们既然在我们的班级中学习,我们就要尽最大努力,更多地关注他们,注重对他们学习方法的指导,学习习惯的培养等,使他们在自己原有的基础上得到发展。
最后,我真诚地希望我的教学能百尺竿头,更进一步!这有赖于我们每一位数学教师以更为饱满的热情,高度的社会责任感和使命感,在学习中探索、在探索中实践、在实践中提升。
文档为doc格式